
Quick Boot Optimization for Exterior
View System in Android

Bo Tong, Open Source Technology Center, Software and Services
Group (OTC/SSG)

2

NOTICE & DISCLAIMER

• Intel technologies’ features and benefits depend on system
configuration

and may require enabled hardware, software or service activation.

• Performance varies depending on system configuration.

• Intel, the Intel logo are trademarks of Intel Corporation in the U.S.
and/or other countries.

• *Other names and brands may be claimed as the property of others.

3

Agenda

 Introduction of Exterior View System (EVS)

–Why EVS is introduced

–EVS stack in Android

 EVS Boot Latency Analysis

–Boot sequence diagram

–Boot time evaluation

 Quick Boot Optimization

–Improved by 3 steps

–Conclusion and suggestion

Introduction of Exterior
View System (EVS)

Why EVS is introduced

5

 SIMPLE: Support camera and view display with simplified design.

 EARLY: Intend to show display very early in the Android boot process.

 EXTENSIBLE: Enables advanced features to be implemented in user apps.

6

 EVS application

–Native code started by init.rc

–Run in background when not in
use

 EVS Manager

–Wrapper between App and HAL

–Accept multiple concurrent
clients

 EVS HAL

–Depends on SurfaceFlinger

–H/W independent but not
efficient

EVS stack in Android

EVS Boot Latency
Analysis

Boot sequence diagram

8

 Communicate with the EVS Manager
and the Vehicle HAL

 An infinite loop monitoring
camera and gear/turn signal state
and reacting respectively

 Use the source image as an OpenGL
texture and render a complex
scene to the output buffer

EvsApp

OpenDisplay

EvsEnu
merator

EvsStateC
ontroller

Construct State Controller

loop

[parameters]

Connect Vehicle HAL

Get Camera List

Get Target Buffer for GL Rendering

RenderDirect
View

Construct RenderDirectView

activate
prepareGL

build shader

VideoTex

createVideoTexture

Stream
Handler

Create StreamHandler

Open Camera

setMaxFramesInFlight

startStream startVideoStream

Stream started

EvsV4lCa
mera

setupCamera

VideoCa
pture

open camera

startStream

loop

[parameters]

EvsGlDis
play

construct EvsGlDisplay

forwardFrame

deliverFrame

drawFrame refresh newFrameAvailable

getNewFrame

returnTargetBufferForDisplay

dqbuf

GlWrapper::renderImageToScreen

markFrameConsumed
qbuf

Boot time evaluation

10

 The application is expected to be
started by init as soon as EVS
manager and vehicle HAL are
available, targeted within 2.0
seconds of power on.

11

Boot time evaluation
Measured from Android first stage init

Quick Boot Optimization

13

Improve by 3 steps

 EVS App: Start Camera Stream with GL preparing concurrently

 EVS HAL: Display frames via composer service before SufaceFlinger is
ready

 Android Init: Start EVS related services/HALs earlier (on boot on

early-init)

14

Step 1
EVS App: Start Camera Stream with GL preparing concurrently

15

Step 2
EVS HAL: Display frames via composer service before SufaceFlinger is
ready

16

Step 3
Android Init: Start EVS related services/HALs earlier (on boot on

early-init)

17

Conclusion

 The optimization can shorten EVS launch time to 1.1s (from Android
first stage init), and the total time is about 3.0s (including
bootloader and kernel time) on our hardware development board.

 If we remove GL preparation and texture operations from EVS App, we
expect EVS launch time can fall down to 0.7s and the total is 2.6s*.

18

Suggestion

 TODO: Multiple clients support in Composer Service

–Composer Service allows only one composer client currently*

–Bypass SurfaceFlinger to shorten the latency

–Solve the EVS HAL lib dependency (e.g. libgui is not VNDK lib
since P)

–The temporary solution is to create two composer clients for EVS
and SurfaceFlinger successively in Composer HAL, and the EVS HAL
should destroy EVS composer client and switch the EVS display to
SurfaceFlinger smoothly once it’s ready.

Q & A

